
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 02 –

C++ Primer (Continued)

Dr. Katherine Gibson

Based on slides by Chris Marron at UMBC

www.umbc.edu

Last Class We Covered

• Syllabus

• Course Expectations and Objectives

• Differences between Python and C++

– Interpreted vs compiled

– Explicitly stating type

– Semicolons

– Curly braces

• C++ is space insensitive!

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Announcements

• The course policy agreement is due back in
class by Tuesday, February 8th

– Worth 1% of your grade

– (Final is now worth 19%)

• The Blackboard site is now available

– It will be updated with a course schedule; we will
not be following Professor Marron’s schedule

– His page still has all of the information on
assignments and course policies

 4

www.umbc.edu

Today’s Objectives

• To begin covering the very basics of C++

– Operators

– Input and Output

– Formatting Output

– Strings

– If, Else, If-Else

– Loops

– Other Control Structures

5

www.umbc.edu

What We’re Learning

• 202’s goal is not to teach you C++

• Want you to instead

– Become better problem solvers

– Learn more advanced techniques

– Become more confident in your skill

• C++ is merely the tool we use

– (Which means you do need to learn it as well)

6

www.umbc.edu

Review: Literal Data

7

• Literals

– Examples:
2 // Literal constant int

5.75 // Literal constant double

'Z' // Literal constant char

"Hello World\n" // Literal constant string

• Cannot change values during execution

• Called "literals" because you "literally typed"
them in your program!

www.umbc.edu

Constants

• You should not use literal constants directly in
your code

– It might seem obvious to you, but not so:
• limit = 52

• Is this weeks per year… or cards in a deck?

• Instead, you should use named constants

– Represent the constant with a meaningful name

– Also allows you to change multiple instances in a
central place

www.umbc.edu

Constants

• There are two ways to do this:

– Old way: preprocessor definition:

#define WEEKS_PER_YEAR 52

(Note: there is no “=”)

– New way: constant variable:
• Just add the keyword “const” to the declaration

const float PI = 3.14159;

www.umbc.edu

Arithmetic Operators

• Standard Arithmetic Operators

• Precedence rules – standard rules

– Parentheses

– Exponents

– Multiplication and...

– Division

– Addition and...

– Subtraction

• Note: do not use “^” for exponents

www.umbc.edu

Operators, Expressions

• Most programming languages have a variety
of operators

–Called unary, binary, and even ternary

–Depends on the number of operands
(things they operate on)

• Usually represented by special symbolic
characters: e.g., ‘+’ for addition, ‘*’ for
multiplication

www.umbc.edu

Operators, Expressions

• There are also relational operators, and
Boolean operators

• Simple units of operands and operators
combine into larger units, according to strict
rules of precedence and associativity

• Each computable unit (both simple and larger
aggregates) is called an expression

www.umbc.edu

Binary Operators

• What is a binary operator?

– An operator that has two operands

<operand> <operator> <operand>

– Arithmetic Operators
+ - * / %

– Relational Operators
 < > == <= >=

– Logical Operators
&& ||

13

www.umbc.edu

Relational Operators

• In C++, all relational operators evaluate to a boolean
value of either true or false .

 x = 5;

 y = 6;

 x > y will always evaluate to false

• C++ has a ternary operator – the general form is:

 (conditional expression) ? true case : false case ;

• Ternary example:

cout << ((x > y) ? "X is greater" : "Y is greater");

14

www.umbc.edu

Unary Operators

• Unary operators only have one operand.
! ++ --

! is logical negation, !true is false, !false is true

++ and -- are the increment and decrement operators
x++ a post-increment (postfix) operation
++x a pre-increment (prefix) operation

• ++ and -- are “shorthand” operators

• More on these later…

15

www.umbc.edu

Precedence, Associativity

• Order of operations application to operands:
• Postfix operators: ++ -- (left to right)
• Prefix operators: ++ -- (right to left)
• Unary operators: + - ++ -- ! (right to left)
• * / % (left to right)
• + - (left to right)
• < > <= >=
• == !=
• &&
• ||
• ? :
• Assignment operator: = (right to left)

16

www.umbc.edu

Associativity

• What is the value of the expression?

 3 * 6 / 9

 (3 * 6) / 9

 18 / 9

 2

• What about this one?

 int x, y, z;

 x = y = z = 0;

www.umbc.edu

Arithmetic Precision

• Precision of Calculations

–VERY important consideration!

• Expressions in C++ might not
evaluate as you’d “expect”!

– "Highest-order operand" determines type
of arithmetic "precision" performed

–Common pitfall!

www.umbc.edu

Arithmetic Precision Examples

• Examples:

– 17 / 5 evaluates to 3 in C++!
• Both operands are integers

• Integer division is performed!

– 17.0 / 5 equals 3.4 in C++!
• Highest-order operand is "double type"

• Double "precision" division is performed!

– int intVar1 = 1, intVar2 = 2;
intVar1 / intVar2;

• Performs integer division!

• Result: 0!

www.umbc.edu

Individual Arithmetic Precision

• Calculations done "one-by-one"

1 / 2 / 3.0 / 4 performs 3 separate divisions.

• First 1 / 2 equals 0

• Then 0 / 3.0 equals 0.0

• Then 0.0 / 4 equals 0.0!

• So not necessarily sufficient to change
just "one operand" in a large expression

– Must keep in mind all individual calculations
that will be performed during evaluation!

www.umbc.edu

Type Casting

• Two types
– Implicit—also called "Automatic"

• Done FOR you, automatically
17 / 5.5

• This expression causes an "implicit type cast" to
take place, casting the 17 17.0

– Explicit type conversion

• Programmer specifies conversion with cast operator
static_cast<double>17 / 5.5

• Same expression as above, using explicit cast
static_cast<double>myInt / myDouble

• More typical use; cast operator on variable

www.umbc.edu

Shorthand Operators

• Increment & Decrement Operators

– Just short-hand notation

– Increment operator, ++

intVar++; is equivalent to
intVar = intVar + 1;

– Decrement operator, --

intVar--; is equivalent to
intVar = intVar – 1;

www.umbc.edu

Shorthand Operators: Two Options

• Post-Increment
intVar++

– Uses current value of variable, THEN increments it

• Pre-Increment
++intVar

– Increments variable first, THEN uses new value

• "Use" is defined as whatever "context"
variable is currently in
– No difference if "alone" in statement:

intVar++; and ++intVar; identical result

www.umbc.edu

Post-Increment in Action

• Post-Increment in Expressions:
int n = 2, valueProduced;

valueProduced = 2 * (n++);

cout << valueProduced << endl;

cout << n << endl;

– What output does this code segment produce?

 4

 3

– Since post-increment was used

www.umbc.edu

Pre-Increment in Action

• Now Using Pre-Increment:
int n = 2, valueProduced;

valueProduced = 2 * (++n);

cout << valueProduced << endl;

cout << n << endl;

– What output does this code segment produce?

 6

 3

– Since pre-increment was used

www.umbc.edu

Assigning Data: Shorthand Notations

• You can use shorthand for many operations

www.umbc.edu

Input and Output

www.umbc.edu

Console Input/Output

• Your input and output objects in C++ are called
cin, cout, cerr

• Defined in the C++ library called <iostream>

• Allow us to:

–Get input from the user

– Send output to the user

–Print error messages to the user

www.umbc.edu

Using namespace std

• At top of each file you must have

using namespace std;

• Otherwise you must use
std::cin cin

std::cout cout

std::endl endl

• Remember, you also need to have the library
 #include <iostream>

 29

instead of

www.umbc.edu

Console Output

• What can be outputted?
– Any data can be outputted to display screen

• Variables

• Constants

• Literals

• Expressions (which can include all of above)
– cout << numberOfGames << " games played.";

– 2 values are outputted:

• "value" of variable numberOfGames,

• literal string " games played."

www.umbc.edu

Separating Lines of Output

• New lines in output
– Recall: "\n" is escape sequence for the char "newline"

• A second option: endl

• Examples:
cout << "Hello World\n";

• Sends string "Hello World" to display, & escape
sequence "\n", skipping to next line

cout << "Hello World" << endl;

• Same result as above

www.umbc.edu

The << Operator

• Insertion operator; used along with cout

• Separates each “type” of thing we print out

int x = 3;

cout << "X is: " << x

 << "; squared "

 << x * x << endl;

32

www.umbc.edu

The >> Operator

• Extraction operator; used with cin

• Skips any leading whitespace, and stops
reading at next whitespace
cin >> firstName >> lastName >> age;

• Separates each “type” of thing we read in

33

www.umbc.edu

Input Using cin

• No literals allowed for cin

– Must input to a variable

• Waits on-screen for keyboard entry
– cin >> num;

– Value entered at keyboard is "assigned" to num

34

www.umbc.edu

Prompting for Input

• Always "prompt" user for input
 cout << "Enter number of dragons: ";
 cin >> numOfDragons;

• Note no "\n" in cout. Prompt "waits" on
same line for keyboard input

• Every cin should have a cout prompt

– Maximizes user-friendly input/output

35

www.umbc.edu

Error Output

• Output with cerr

– cerr works almost the same as cout

–Provides mechanism for distinguishing
between regular output and error output

• Re-direct output streams

–Most systems allow cout and cerr to be
"redirected" to other devices

• e.g., line printer, output file, error console, etc.

www.umbc.edu

Formatting Output

• Formatting numeric values for output

–Values may not display as expected
 cout << "The price is $" << price << endl;

• If price (declared a double) has the
value 78.5, you might get
– The price is $78.5000000

– The price is $78.5

• Neither is what you want

–Have to tell C++ how to output numbers.

www.umbc.edu

Formatting Numbers

• "Magic Formula" to force decimal sizes:
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);

 cout.precision(2);

• These statements force all future cout’ed values to
have exactly two digits after the decimal place:
– Example:

cout << "The price is $" << price << endl;

• Now results in the following:
The price is $78.50

• Can modify precision whenever you want in the code

www.umbc.edu

Formatting Integers

• Field width and fill characters

– Must #include <iomanip>

– setw(n) sets field width to n

– cout.fill(c) sets “fill” character to c

• Example:
– int x = 7;

cout.fill('0'); //set fill character to 0

cout << setw(3) << x << endl;

– Outputs 007 (left pads with zeros)

www.umbc.edu

C-Strings and the String class

www.umbc.edu

C-strings

• C++ has two kinds of “strings of characters”:

– the original C-string: array of characters

– The object-oriented string class

• C-strings are terminated with a null character (‘\0’)
char myString[80];

declares a variable with enough space for a string
with 79 usable characters, plus the null char

www.umbc.edu

C-strings

• You can initialize a C-string variable:
 char myString[80] = “Hello world”;

This will set the first 11 characters as given, make the
12th character ‘\0’, and the rest unused for now.

• What would these look like?
char str1 [5] = “dog”;

char str2 [5] = “cat”;

char str3 [5];

www.umbc.edu

Arrays of Characters

char str1 [5] = “dog”;

element 0 1 2 3

char ‘d’ ‘o’ ‘g’ ‘\0’ ‘x’

char str2 [5] = “cat”;

element 0 1 2 3

char ‘c’ ‘a’ ‘t’ ‘\0’ ‘f’

char str3 [5];

element 0 1 2 3 4

char ‘.’ ‘N’ ‘=’ ‘¿’ ‘8’

• str3 was only declared, not initialized, so it’s
filled with garbage

43

and has no null terminator

www.umbc.edu

Terrible C-style string Joke

Two strings walk into a bar.

The bartender says, "What'll it be?"

The first string says, "I'll have a gin and
tonic#MV*()>SDk+!^&@P&]JEA".

The second string says, "You'll have to excuse my
friend, he's not null-terminated."

44

www.umbc.edu

String type

• C++ added a data type of “string”
– Not a primitive data type; distinction will be made later

– Need to #include <string> at the top of the
program

– The “+” operator on strings concatenates two strings
together

– cin >> str where str is a string only reads up to
the first whitespace character

www.umbc.edu

String Equality

• In Python, you can use the simple “==“
operator to compare two strings:
 if name == “Fred”:

• In C++, you can use “==” to compare two string
class items, but not C-strings!

• To compare two C-strings, you have to use the
function strcmp();

– It is not syntactically incorrect to compare two
C-strings with “==“, but it doesn’t do what you expect

www.umbc.edu

Programming Style

www.umbc.edu

Programming Style

• Bottom-line: Make programs easy to read and modify

• Comments, two methods:

– // Two slashes indicate entire line is to be ignored

– /*Delimiters indicates everything between is ignored*/

– Both methods commonly used

• Identifier naming

– ALL_CAPS for constants

– lowerToUpper for variables

– Most important: MEANINGFUL NAMES!

www.umbc.edu

Libraries

• C++ Standard Libraries

• #include <library_name>

– Directive to "add" contents of library file to
your program

– Called "preprocessor directive"
• Executes before compiler, and simply "copies"

library file into your program file

• C++ has many libraries
– Input/output, math, strings, etc.

www.umbc.edu

Summary Part 1

• C++ is case-sensitive

• Use meaningful names
– For variables and constants

• Variables must be declared before use
– Should also be initialized

• Use care in numeric manipulation
– Precision, parentheses, order of operations

• #include C++ libraries as needed

www.umbc.edu

Summary Part 2

• Object cout
– Used for console output

• Object cin
– Used for console input

• Object cerr
– Used for error messages

• Use comments to aid understanding of
your program
– Do not over-comment

www.umbc.edu

Compilation

www.umbc.edu

Using the C Compiler at UMBC

• Invoking the compiler is system dependent.

– At UMBC, we have two C compilers available, cc
and gcc.

– For this class, we will use the gcc compiler as it is
the compiler available on the Linux system.

www.umbc.edu

Invoking the Compiler

• At the prompt, type

 g++ -Wall program.cpp –o program.out

• where program.cpp is the C++ program
source file

• -Wall is an option to turn on all
compiler warnings (really good idea!)

www.umbc.edu

The Executable File

• If there are no errors in program.cpp, this command
produces an executable file, which is one that can be
executed (run).

– If you do not use the “-o” option, the compiler
names the executable file a.out

• To execute the program, at the prompt, type

 ./program.out

• Although we call this process “compiling a program,”
what actually happens is more complicated.

www.umbc.edu

The “make” System

• We will be using the “make” system to
automate what was shown in the previous
few slides

• This will be discussed in more detail in lab

www.umbc.edu

Expressions, Statements, and If

www.umbc.edu

• An expression is a construct made up of
variables, operators, and method invocations,
that evaluates to a single value.

• For example:

Expressions

int cadence = 0;

anArray[0] = 100;

cout << "Element 1 at index 0: " << anArray[0]);

int result = 1 + 2;

cout << (x == y ? "equal" :"not equal");

www.umbc.edu

Statements

• Statements are roughly equivalent to
sentences in a language. A statement
forms a complete unit of execution.

• Two types of statements:
– Expression statements – end with a semicolon ‘;’

• Assignment expressions

• Any use of ++ or --

• Method invocations

• Object creation expressions

– Control Flow statements
• Selection & repetition structures

www.umbc.edu

If-Then Statement

• The if-then statement is the most basic of all
the control flow statements.

if (x == 2)

 cout << "x is 2";

cout << "Finished";

if x == 2:

 print "x is 2"

print "Finished"

Python C++

www.umbc.edu

A brief digression…

Notes about C++’s if-then:

• Conditional expression must be in parentheses

• Conditional expression has various interpretations of
 “truthiness” depending on type of expression

• If-then raises questions about

– Multi-statement blocks

– Scope

– Truth in C++

www.umbc.edu

Multiple Statements

• What if our then case contains multiple
statements?

if(x == 2)

 cout << "even";

 cout << "prime";

cout << "Done!";

if x == 2:

 print "even"

 print "prime"

print "Done!"

Python C++ (but incorrect!!)

Unlike Python, spacing plays no role in C++’s
selection/repetition structures
• The C++ code is syntactically fine – no compiler errors
• However, it is logically incorrect

www.umbc.edu

Blocks

• A block is a group of zero or more statements
that are grouped together by delimiters.

• In C++, blocks are denoted by opening and
closing curly braces ‘{’ and ‘}’

if(x == 2) {

 cout << "even";

 cout << "prime";

}

cout << "Done!";

Note:
• It is generally considered a good practice to include the curly
braces even for single line statements. Why?

www.umbc.edu

 “Truthiness”**

• What is “true” in C++?

• Like some other languages, C++ has a true
Boolean primitive type (bool), which can
hold the constant values true and false

• Assigning a Boolean value to an int
variable will assign 0 for false, 1 for true

** kudos to Stephen Colbert

www.umbc.edu

“Truthiness”

• For compatibility with C, C++ is very liberal
about what it allows in places where Boolean
values are called for:

– bool constants, variables, and expressions
have the obvious interpretation

– Any integer-valued type is also allowed

• 0 is interpreted as “false”,
all other values as “true”

• So, even -1 is considered true!

www.umbc.edu

Gotcha! = versus ==

int a = 0;

if (a = 1) {

 cout << "a is one\n" ;

}

What happens here?

How do we fix it?

www.umbc.edu

If-Then-Else Statement

• The if-then-else statement looks much like it
does in Python (aside from the parentheses
and curly braces)

if(x % 2 == 1) {

 cout << "odd";

} else {

 cout << "even";

}

if x % 2 == 1:

 print "odd"

else:

 print "even"

Python C++

www.umbc.edu

If-Else If-Else Statement

• Again, very similar…

if (x < y) {

 cout << "x < y";

} else if (x > y) {

 cout << "x > y";

} else {

 cout << "x == y";

}

if x < y:

 print "x < y"

elif x > y:

 print "x > y"

else:

 print "x == y"

Python C++

www.umbc.edu

Other Control Structures

www.umbc.edu

Switch Statement

• Unlike if-then and if-then-else, the switch
statement allows for any number of possible
execution paths.

• Works with any integer-based (e.g., char, int,
long) or enumerated type (covered later)

www.umbc.edu

Switch Statement

int cardValue = /* get value from somewhere */;

switch(cardValue) {

 case 1:

 cout << "Ace";

 break;

 case 11:

 cout << "Jack";

 break;

 case 12:

 cout << "Queen";

 break;

 case 13:

 cout << "King";

 break;

 default:

 cout << cardValue;

 break;

}

Notes:
• break statements are typically
used to terminate each case.
• It is usually a good practice to
include a default case.

www.umbc.edu

Switch Statement

switch (month) {

 case 1: case 3: case 5: case 7:

 case 8: case 10: case 12:

 cout << "31 days";

 break;

 case 4: case 6: case 9: case 11:

 cout << "30 days";

 break;

 case 2:

 cout << "28 or 29 days";

 break;

 default:

 cout << "Invalid month!";

 break;

}

Note:
• Without a break statement, cases “fall through” to the next statement.

www.umbc.edu

Switch Statement

• The switching value must evaluate to an
integer or enumerated type

• The case values must be constant
or literal, or enum value

• The case values must be of the same
type as the switch expression

73

www.umbc.edu

While Loops

• The while loop executes a block of statements
while a particular condition is true.

• Pretty much the same as Python…

int count = 0;

while(count < 10) {

 cout << count;

 count++;

}

cout << "Done!";

count = 0;

while(count < 10):

 print count

 count += 1

print "Done!"

Python C++

www.umbc.edu

For Loop

• The for statement provides a compact way to iterate
over a range of values.

• The initialization expression initializes the loop – it is
executed once, as the loop begins.

• When the termination expression evaluates to false,
the loop terminates.

• The increment expression is invoked after each
iteration through the loop.

for (initialization; termination; increment)

{

 /* ... statement(s) ... */

}

www.umbc.edu

For Loop

• The equivalent loop written as a for loop

– Counting from start value (zero) up to (excluding)
some number (10)

for (int count = 0; count < 10; count++) {

 cout << count;

}

cout << "Done!";

for count in range(0, 10):

 print count

print "Done!"

Python

C++

76

www.umbc.edu

For Loop

• Counting from 25 up to (excluding) 50 by 5s

for (int count = 25; count < 50; count += 5){

 cout << count;

}

cout << "Done!";

for count in range(25, 50, 5):

 print count

print "Done!"

Python

C++

77

www.umbc.edu

Variable Scope

www.umbc.edu

Variable Scope

• You can define new variables in many places in your code, so
where is it in effect?

• A variable’s scope is the set of code statements in which the
variable is known to the compiler.

• Where a variable can be referenced from in your program

• Limited to the code block in which the variable is defined

• For example:

if(age >= 18) {

 bool adult = true;

}

/* can't access adult here */

79

www.umbc.edu

Scope Example

80

#include <iostream>

using namespace std;

int main() {

 int x = 3, y = 4;

 {

 int x = 7;

 cout << "x in block is " << x << endl;

 cout << "y in block is " << y << endl;

 }

 cout << "x in main is " << x << endl;

return 0;

}

What will this code do?

www.umbc.edu

Announcements

• The course policy agreement is due back in
class by Tuesday, February 8th

• The add/drop date has been
extended to February 10th

• Next Time: Functions and Arrays

81

